Heong-Seup Yim, ${ }^{a}$ Ho-Kyun Kim, ${ }^{\text {a }}$ Jeum-Jong Kim, ${ }^{a}$ Deok-Heon Kweon, ${ }^{\text {a }}$ Sang-Gyeong Lee, ${ }^{\text {b }}$ Jung-Ho Kim ${ }^{\text {c }}$ and Yong-Jin Yoon*a

${ }^{a}$ Department of Chemistry, Environmental Biotechnology National Core Research center, Research Institute of Natural Science, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University, Jinju 660-701, Korea
${ }^{b}$ Department of Chemistry \&Research Institute of Life Science, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University, Jinju 660-701, Korea
${ }^{\mathrm{c}}$ Hanwha Chemical R \& D center, 6 Shinsung-Dong, Yusung-Gu, Taejon 305-345, Korea
yjyoon@gnu.ac.kr

Received December 26, 2006

1-Alkyl-5-arylalkoxy-6-methoxy-3,4-dihydroisoquinolines were synthesized by the alkylation of 1-alkyl-5-hydroxy-6-methoxy-3,4-dihydroisoquinolines with arylalkyl halide in the presence of potassium carbonate. 1-Alkyl-5-hydroxy-6-methoxy-3,4-dihydroisoquinolines as key precursor prepared from ovaniline via 6 steps.
J. Heterocyclic Chem., 44, 909 (2007).

INTRODUCTION

Isoquinoline alkaloids are often selected as synthetic targets due to their various physiological activities and structural properties [1]. In previous papers [2], we reported the pharmacological effect and chemistry for some isoquinoline derivatives. In connection with the SAR study and the evaluation of biological activity such as cardiovascular activity or immunosuppressive activity, we required especially some 1-alkyl-5-arylalkoxy (or heteroarylalkoxy)-6-methoxy-3,4-dihydroisoquinoline derivatives. Although the synthetic methods of the interesting isoquinolines have been reported [1-3], there are no general synthetic methods to obtain 1-alkyl-5-arylalkoxy-6-methoxy-3,4-dihydroisoquinolines. The Bischler-Napieralski [2-4] condensation is a common method for the formation of 3,4-dihydroisoquinoline ring system.

According to the retrosynthesis as shown Scheme 1, the two routes are possible for the synthesis of 1-alkyl-5-arylalkoxy-3,4-dihydroisoquinolines; the first is the method using the alkylation of 1-alkyl-5-hydroxy derivative with arylalkyl halide (method A), and the second is the method using the cyclization of N -(2-alkoxy-3methoxyphenethyl)alkanamide (method B).
The method A is more useful than the method B for the introduction of various arylalkoxy groups at $\mathrm{C}-5$ position (Scheme 2). When 2-heteroalkoxy-3-methoxybenzaldehyde is used as the starting material (method B), unexpected side reactions may occur during the coupling reaction and the cyclization. Actually, we detected the unknown products on tlc during these reaction. Therefore, we attempted to synthesize the 1 -alkyl-5-arylalkoxy-3,4dihydroisoquinolines according to method A .
From the retrosynthesis of target molecules (Scheme 1), we chose o-vaniline (1) as the starting material for the

Scheme 1

Scheme 2

synthesis of 1-alkyl-5-hydroxy-6-methoxy derivatives as a key precursor.

In this paper, we would like to report on synthesis of some 1-alkyl-5-arylalkoxy-6-methoxy-3,4-dihydroisoquinolines from o-vaniline.

RESULTS AND DISCUSSION

Compound 7 as key precursor was prepared from ovaniline (1) via six steps according to Scheme 3. Reaction of o-vaniline (1) with benzyl chloride in the presence of potassium carbonate in methanol gave compound 2 in 93% yield. Treatment of 2 with nitromethane in the presence of potassium fluoride and dimethylamine hydrochloride in toluene afforded β-nitrostyrene $\mathbf{3}$ in excellent yield. Compound 3 was reduced selectively to the corresponding amine $\mathbf{4}$ using lithium aluminum hydride in diethyl ether. Reaction of $\mathbf{4}$ with acyl chloride in the presence of triethylamine in acetonitrile gave the corresponding amides $\mathbf{5 a}$ and $\mathbf{5 b}$ in excellent yields.

Cyclization of 5 with phosphorus oxychloride in acetonitrile at room temperature also furnished the corresponding 3,4-dihydroisoquinolines $\mathbf{6 a}$ and $\mathbf{6 b}$. The infrared spectra of $\mathbf{6}$ did not show absorption bands of the carbonyl and NH bonds. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra of 6 revealed proton signals of one OCH_{3}, two CH_{2} of $\mathrm{C}-3$ and $\mathrm{C}-4$ positions and one benzylic CH_{2} at $\mathrm{C}-5$ involving aromatic and alkyl chain protons at $\mathrm{C}-1$ position.
Debenzylation of compound 6 with hydrogen in the presence of Pd / C in methanol gave the corresponding 5-hydroxy-3,4-dihydroisoquinolines $7 \mathbf{a}$ and $7 \mathbf{b}$ in good yield, respectively. The infrared spectra of 7a and 7b showed absorption band of the hydroxyl bond. The ${ }^{1} \mathrm{H}$ nmr spectra of $\mathbf{7 a}$ and $\mathbf{7 b}$ also detected proton signals of one OCH_{3} and two CH_{2} of $\mathrm{C}-3$ and $\mathrm{C}-4$ positions involving aromatic and alkyl chain protons at $\mathrm{C}-1$ position.

On the other hand, we attempted to synthesize some 5-arylalkoxy (or heteroarylalkoxy)-3,4-dihydroxyiso-

Scheme 3

quinolines. Alkylation of compound 7 with benzyl chlorides or heteroarylalkyl chlorides (or bromides) in the presence of potassium carbonate in methanol except for $\mathbf{8 c}\left(\mathrm{CH}_{3} \mathrm{CN}\right), \mathbf{8 h}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and $\mathbf{8 k}$ (THF) afforded the corresponding 1-hexyl (or decyl)-5-arylalkoxy-6-meth-oxy-3,4-dihydroisoquinolines in moderate to good yield, respectively. When the reaction of 7 with 4,5-dichloro-1-chloromethylpyridazin- $3(2 \mathrm{H})$-one in the presence of potassium carbonate in methanol, 4-chloro-5-methoxy-1-methoxymethylpyridazin- $3(2 \mathrm{H})$-one as the main product was obtained instead of the expected product $\mathbf{8 k}$. This result is similar to Chung's result for the methoxylation of 4,5-dichloropyridazin-3(2H)-one with potassium carbonate in methanol [5]. Therefore, we used tetrahydrofuran as solvent for the alkylation of compound 7 with 4,5-dichloro-1-chloromethylpyridazin-3(2 H)-one in the presence of potassium carbonate. The infrared spectra of $\mathbf{8}$ did not show absorption band of the OH bond. The ${ }^{1} \mathrm{H}$ nmr spectra of $\mathbf{8}$ revealed proton signals of one $\mathrm{OCH}_{3}(\delta$ $3.58-3.92 \mathrm{ppm}$ as singlet) and two CH_{2} of $\mathrm{C}-3$ and $\mathrm{C}-4$ positions ($\delta 2.43-2.75 \mathrm{ppm}$ as triplets or multiplets for C-3 and δ 2.33-2.66 ppm as triplets or multiplets for C-4) involving aromatic, arylalkyl chain at C-5 and alkyl chain protons at C-1 position. The structures of all synthetic compounds were established by ir, nmr and elemental analyses.
In summary, a efficient and facile route for the preparation of 1-alky-5-arylalkoxy-6-methoxy-3,4-dihydroisoquinolines has been developed. The most advantageous feature of the synthesis reported here is the fact that the target molecules can be obtained with various arylalkoxy group at C-5 position in 3,4-dihydroisoquinoline ring. Further work including the biological activity and the chemical transformation of the products to 2 -substituted-1,2,3,4-tetraisoquinolinium salts are under way in our laboratory.

EXPERIMENTAL

Melting points were determined with a capillary apparatus and uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 300 MHz spectrophotometer with chemical shift values reported in δ units (ppm) relative to an internal standard (TMS). IR spectra were obtained on an IR spectrophotometer. Elemental analyses were performed with a CHNS-932 (Leco). High resolution mass spectra (HRMS) were obtained on a JEOL JMS700 (Japan) system. Open-bed chromatography was carried out on silica gel (70-230 mesh, Merck) using gravity flow. The column was packed as slurries with the elution solvent.

2-(Benzyloxy)-3-methoxybenzaldehyde (2). A solution of o vaniline ($1,10 \mathrm{~g}, 66 \mathrm{mmol}$), potassium carbonate $(11 \mathrm{~g}, 79$ mmol) and benzyl chloride ($11.4 \mathrm{~mL}, 99 \mathrm{mmol}$) in methanol $(200 \mathrm{~mL})$ was refluxed for $17-19$ hours. After cooling to room temperature, the mixture was filtrated and evaporated under reduced pressure. Water (150 mL) and diethyl ether (150 mL) was added to the resulting residue and the mixture was then
stirred for 5 minutes. After separating the organic layer, this layer was washed with sodium hydroxide solution (100 mL , 25%) and water (150 mL) and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give compound 2 as yellowish liquid in 93% yield. mp oil (lit.[6] $\mathrm{mp} 58-59{ }^{\circ} \mathrm{C}$). IR (KBr): 3060, 3030, 2940, 2870, 1690, 1590, $1480,1450,1370,1310,1270,1220,1180,1070,970,910,670$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.09$ $(\mathrm{m}, 2 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 6 \mathrm{H}), 10.23 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 118.1,118.9,124.3,128.4,128.5,128.6,128.7$, 130.3, 136.6, 153.1, 190.1 ppm ; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}$, 74.36; H 5.82. Found: C, 74.40; H 5.89.

2-(Benzyloxy)-1-methoxy-3-(2-nitrovinyl)benzene (3). Compound $2(2 \mathrm{~g}, 8.3 \mathrm{mmol})$ was dissolved in toluene/ nitromethane $(20 \mathrm{~mL}: 20 \mathrm{~mL}) . \quad N, N$-Dimethylammonium chloride $(1.4 \mathrm{~g}, 16.6 \mathrm{mmol})$ and potassium fluoride $(0.1 \mathrm{~g}, 1.3$ mmol) were added to the solution. The mixture was refluxed for 3-4 hours. And during the reaction, water was removed using Dean-Stark tube. After cooling to room temperature, the solution was filtrated and evaporated under reduced pressure. The resulting residue was dissolved in diethyl ether (30 mL) after which the solution was filtrated. The solvent was evaporated under reduced pressure to give the product $\mathbf{3}$ as yellow crystals in 89% yield, $\mathrm{mp} 64-65^{\circ} \mathrm{C}$ (lit.[6] mp $72-$ $73^{\circ} \mathrm{C}$). IR (KBr): 3110, 3080, 3010, 2940, 2880, 2840, 1680, $1630,1580,1510,1450,1340,1270,1060,970,790,740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.96(\mathrm{~s}, 3 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.15(\mathrm{~m}$, $3 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.7 \mathrm{~Hz}), 8.11 \mathrm{ppm}(\mathrm{d}$, $1 \mathrm{H}, \mathrm{J}=13.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 56.0,75.7,115.7,120.7$, $124.6,125.0,127.0,128.6,128.9,134.7,136.3,138.1,147.7$, 153.3 ppm . Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}(285.29)$: C, 67.36; H, 5.30; N 4.91. Found: C, 67.41; H, 5.39; N, 5.02.

2-[2-(Benzyloxy)-3-methoxyphenyl]ethanamine (4). A ether solution of compound $3(10 \mathrm{~g}, 25.1 \mathrm{mmol}$ in 100 mL of diethyl ether) was added slowly to ether solution of lithium aluminum hydride $(6.7 \mathrm{~g}, 0.18 \mathrm{~mol}$ in 200 mL of diethyl ether) for 30 minutes with stirring. The mixture was refluxed for 44-46 hours. After cooling the reaction mixture to room temperature, water $(50 \mathrm{~mL})$ was added slowly in an ice bath. And potassium hydroxide aqueous solution ($20 \mathrm{~mL}, 20 \%$) was then added to the mixture. The mixture was stirred for 5 minutes, and neutralized by adding hydrochloric acid (50%) to pH 7 . The product was extracted with diethyl ether ($2 \times 250 \mathrm{~mL}$). The resulting ether solution was washed with water (250 mL) and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give compound 4 as liquid in 77% yield. IR (KBr): 3370, 3300, 3060, 2940, 2870, 2840, 1590, $1470,1380,1270,1210,1080,1010,990,750,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.13(\mathrm{bs}, 2 \mathrm{H}), 2.70(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.85(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 6.75-6.82(\mathrm{~m}, 2 \mathrm{H})$, $6.99(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.30-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.45 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}$ $=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 34.2,42.6,55.7,74.7$ 110.7, $122.3,124.0,127.9,128.1,128.4,133.8,138.0,146.2,152.9$ ppm. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, $74.68 ; \mathrm{H}, 7.44 ; \mathrm{N}, 5.44$. Found: C, 74.71; H, 7.49; N, 5.47.
\boldsymbol{N}-(2-Benzyloxy-3-methoxyphenethyl)alkanamide (5). A solution of compound $4(5 \mathrm{~g}, 19.4 \mathrm{mmol})$, triethyl amine (3.3 $\mathrm{mL}, 23.28 \mathrm{mmol}$), alkanoyl chloride (23.28 mmol) and acetonitrile (150 mL) was stirred for $1-1.5$ hours at room temperature. After filtering the mixture, the solvent was evaporated under reduced pressure. Diethyl ether/ water (100 $\mathrm{mL}: 100 \mathrm{~mL}$) was added to the residue. The resulting solution
was stirred for 5 minute. After separating the organic layer, the solution was dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the product 5 .

Compound 5a. Yield: 93%; mp 49-50 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3300, 3070, 3030, 2950, 2930, 2860, 1640, 1570, 1550, 1470, 1370, $1270,1210,1080,990,750,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.88$ $(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.21-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.78(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 3.42(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.3$ and 6.1 Hz$), 3.90(\mathrm{~s}, 3 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{~s}, \mathrm{NH}), 6.77(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.03(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.9$ $\mathrm{Hz}), 7.32-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.48 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1,22.5,25.6,28.9,30.0,31.5,36.7,40.6$, $55.7,74.8,111.0,122.4,124.4,128.1,128.3,128.5,133.4$, 137.7, 145.9, 152.8, 173.3 ppm . Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3}: \mathrm{C}$, 74.76 ; H, 8.46; N, 3.79. Found: C, 74.80; H, 8.60; N 3.83.

Compound 5b. Yield: 89%; mp $70-71^{\circ} \mathrm{C}$. IR (KBr): 3320, 3080, 3040, 3000, 2920, 2850, 1640, 1580, 1550, 1470, 1380, $1360,1310,1270,1210,1090,1040,1000,980,920,750,700$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.20-1.32$ (m, 14H), $1.43-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.76(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.38-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H})$, 5.85 (bs, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $6.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}$), 6.85 $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.03(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.31-7.41(\mathrm{~m}, 3 \mathrm{H})$, $7.46 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1,22.7$, 25.7, 29.2, 29.3, 29.4, 29.5, 29.6, 30.0, 31.9, 36.8, 40.6, 55.7, $74.8,110.9,122.4,124.4,128.1,128.3,128.5,133.5,137.6$, 145.9, 152.8, 173.2 ppm. Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{3}: \mathrm{C}, 76.20$; H, 9.24; N, 3.29. Found: C, 76.28; H, 9.31; N, 3.30.

1-Alkyl-5-benzyloxy-6-methoxy-3,4-dihydroisoquinoline (6). A solution of compound 5 (0.027 mol), phosphorus oxychloride ($10.1 \mathrm{~mL}, 0.108 \mathrm{~mol}$) and acetonitrile $(150 \mathrm{~mL})$ was stirred for 18 hours at room temperature. After evaporating the solvent under reduced pressure, water (100 mL) was added to the residue. And the mixture was then neutralized with sodium hydroxide solution (20%) to pH 7 . The product was extracted with diethyl ether ($100 \mathrm{~mL} \times 2$). After drying over anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure to give the product 6 .

Compound 6a. Yield 74\%; mp 137-138 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3070, 3020, 2930, 2850, 1600, 1570, 1470, 1280, 1220, 1080, 980, $750,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.27$ - $1.32(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.79(\mathrm{~m}, 2 \mathrm{H}), 2.75$ (t, 2H, J = 7.7 Hz), $3.21(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 3.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6$ $\mathrm{Hz}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.30-$ $7.36(\mathrm{~m}, 5 \mathrm{H}), 7.67 \mathrm{ppm}(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: ठ 13.9, 19.7, 22.2, 28.8, 29.1, 31.2, 32.4, 40.3, 56.5, 74.9, 111.3, 117.6, 127.9, 128.5, 128.6, 128.7, 132.1, 136.2, 143.9, 159.8, 177.4 ppm ; HRMS Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{2}: 351.2198$; Found: 351.2194. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{2}$: C, 78.59; H, 8.32; N , 3.99. Found: C, 78.62 ; H, 8.40; N, 4.06.

Compound 6b. Yield: 72\%; mp liquid. IR (KBr): 3060, 3030, 2930, 2850, 1620, 1600, 1570, 1490, 1450, 1370, 1330, 1270, 1210, 1150, 1080, 990, 810, $750,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $0.87(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}), 1.21-1.32(\mathrm{~m}, 14 \mathrm{H}), 1.57-1.67$ (m, $2 \mathrm{H}), 2.55(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.66(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 3.47(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$), $3.88(\mathrm{~s}, 3 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5$ $\mathrm{Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.28-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.39 \mathrm{ppm}(\mathrm{d}$, $2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1,20.2,22.7,27.4$, 29.3, 29.4, 29.5, 29.6, 31.9, 36.1, 46.4, 55.6, 60.3, 74.7, 109.3, $121.9,123.0,128.1,128.4,132.5,137.4,143.7,154.3,167.1$ ppm; HRMS Calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{2}$: 407.2824; Found: 407.2829.

Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{2}$: C, 79.56; H, 9.15; N, 3.44. Found: C, 79.61; H, 9.21; N, 3.50.

1-Alkyl-6-methoxy-3, 4-dihydroisoquinolin-5-ol (7). A solution of compound $\mathbf{6}(28.5 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(0.5 \mathrm{~g})$ and methanol (150 mL) was stirred for $4-8$ hours under a hydrogen atmosphere (using toy balloon) at room temperature. After filtering using Celite -545 pad, the filtrate was evaporated under reduced pressure. The resulting residue was applied to the top of an open-bed silica gel column ($3.5 \times 14 \mathrm{~cm}$). The column was eluted with ethyl acetate. Fractions containing the product were combined and evaporated under reduced pressure to give the corresponding phenol 7 .

Compound 7a. Yield 85%; mp 115-116 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3500 , 3080, 2950, 2920, 2850, 1620, 1590, 1500, 1460, 1430, 1290, 1240, 1070, 870, $790 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.84(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $6.8 \mathrm{~Hz}), 1.23-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.76$ $(\mathrm{m}, 4 \mathrm{H}), 3.62(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.25 \mathrm{ppm}\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1,19.5,22.6,27.8,29.3$, $31.6,35.9,46.0,55.7,107.9,117.6,122.8,124.6,142.3,149.0$, 168.0 ppm . Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{C}, 73.53 ; \mathrm{H}, 8.87$; N, 5.36. Found: C, $73.60 ;$ H, 8.91 ; N, 5.50.

Compound 7b. Yield: 70%; mp $108-109{ }^{\circ} \mathrm{C}$. IR (KBr): 3450, 3010, 2930, 2850, 1640, 1610, 1570, 1490, 1460, 1440, 1290, 1240, 1150, 1080, 910, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $0.86(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 1.19-1.34(\mathrm{~m}, 12 \mathrm{H}), 1.42-1.51(\mathrm{~m}$, $2 \mathrm{H}), 1.73-1.81(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 3.20(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}$ $=7.3 \mathrm{~Hz}), 3.83(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 6.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.6 \mathrm{~Hz}), 7.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 8.04 \mathrm{ppm}\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.0,19.0,22.6,29.0,29.1$, 29.2, 29.3, 29.4, 29.5, 31.7, 32.7, 40.6, 56.5, 109.5, 117.8, 123.1, 123.6, 143.2, 154.3, 177.6 ppm . Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{2}: \mathrm{C}$, 75.67; H, 9.84; N, 4.41. Found: C, 75.73; H, 9.90; N, 4.48.

1-Alkyl-5-arylalkoxy-6-methoxy-3,4-dihydroisoquinoline (8). A solution of compound 7 (11.5 mmol), potassium carbonate ($13.8 \mathrm{mmol}, 1.2$ equiv), arylalkyl halide (16.1 mmol , 1.4 equiv) and methanol was refluxed until compound 7 was disappeared. After cooling to room temperature, the mixture was filtered. The filtrate was evaporated under reduced pressure. The resulting residue was applied to the top of an open-bed silica gel column. The column was eluted with ethyl acetate. Fractions containing the product were combined and evaporated under reduced pressure to give the product 8 .

Compound 8a. Yield 75%; mp $87-88^{\circ} \mathrm{C}$. IR (KBr): 3050 , 3010, 2950, 2920, 2850, 1630, 1600, 1570, 1490, 1450, 1430, 1370, 1330, 1270, 1220, 1140, 1080, 1050, 1040, 990, 820, 780, $730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.30-$ $1.40(\mathrm{~m}, 6 \mathrm{H}), 1.59-1.69(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.75(\mathrm{~m}, 4 \mathrm{H}), 3.57(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$), $3.87(\mathrm{~s}, 3 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5$ $\mathrm{Hz}), 7.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.70(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5$ $\mathrm{Hz}), 8.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.20 \mathrm{ppm}(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 14.1,20.2,22.6,27.4,29.3,31.7,36.1,46.4$, 55.6, 75.9, 109.4, 119.7, 122.1, 123.0, 126.4, 127.5, 127.6, 129.0, 129.6, 132.0, 136.7, 143.9, 147.4, 154.1, 158.3, 167.1 ppm; HRMS Calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$: 402.2307; Found: 402.2298. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 77.58; $\mathrm{H}, 7.51$; N , 6.96. Found: C, $77.62 ; \mathrm{H}, 7.57$; N, 7.02.

Compound 8b. Yield: 76\%; mp oil. IR (KBr): 3090, 3030, 2920, 2850, 1620, 1600, 1570, 1490, 1450, 1370, 1330, 1280, 1220, 1150, 1080, 1000, 940, 870, 800, 710, $670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.61,(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}), 0.98-1.11(\mathrm{~m}, 6 \mathrm{H}), 1.32-$
$1.38(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.43(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz})$, 3.25 (t, 2H, J = 7.5 Hz), 3.63 (s, 3H), 6.57 - 6.61 (m, 1H), 6.99 $7.04(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.27-8.29 \mathrm{~Hz}(\mathrm{~m}, 1 \mathrm{H})$, $8.39 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.9,19.9,22.3,25.2$, 27.3, 28.8, 28.9, 31.2, 31.4, 35.2, 35.4, 45.5, 55.4, 71.7, 109.3, $122.4,123.2,131.8,132.8,135.9,143.0,148.0,149.0,149.2$, 154.2, 167.4 ppm ; HRMS Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}: 352.2151$; Found: 352.2147. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 74.97$; H , 8.01; N, 7.95. Found: C, 75.02; H, 8.04; N, 7.98.

Compound 8c. Yield: 62\%; mp oil. IR (KBr): 3070, 3050, 2950, 2930, 2860, 2650, 1620, 1600, 1570, 1490, 1460, 1400, 1370, 1280, 1210, 1080, 1010, 830, 800, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.20-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.53-$ $1.61(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.64(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz})$, 3.44 (t, 2H, J = 7.1 Hz), $3.85(\mathrm{~s}, 3 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=8.6 \mathrm{~Hz}), 7.26(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz})$, $7.43 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1,20.2$, 22.5, 22.6, 27.4, 29.3, 31.7, 36.0, 46.3, 55.7, 73.8, 109.4, 122.0, $122.1,122.9,129.9,131.5,132.2,136.5,143.5,154.2,167.2$ ppm; HRMS Calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrNO}_{2}$: 429.1303; Found: 429.1299. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrNO}_{2}$: C, $64.19 ; \mathrm{H}, 6.56$; N , 3.25. Found: C, 64.21 ; H, 6.60; N, 3.32 .

Compound 8d. Yield: 71%; mp $85-86^{\circ} \mathrm{C}$. IR (KBr): 3090, 3070, 3030, 3000, 2950, 2930, 2890, 2840, 1620, 1600, 1570, 1520, 1490, 1450, 1350, 1270, 1210, 1140, 1080, 990, 850, 810 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.27-1.40(\mathrm{~m}$, $6 \mathrm{H}), 1.59-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.71(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1$ $\mathrm{Hz}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.31(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 14.0,20.1,22.5,27.3,29.2,31.6,36.0,46.3$, 55.7, 73.1, 109.4, 122.3, 123.0, 123.5, 131.9, 143.3, 145.1, 147.4, 153.9, 166.9 ppm ; HRMS Calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$: 396.2049; Found: 396.2056. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 69.67; H, 7.12; N, 7.07. Found: C, 69.70; H, 7.22; N, 7.11.

Compound 8e. Yield: 63\%; mp oil. IR (KBr): 3060, 2930, $2850,1770,1710,1620,1600,1570,1490,1430,1390,1270$, 1220, 1080, 1020, 910, 740, $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.86$ $(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.23-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.62(\mathrm{~m}, 2 \mathrm{H})$, $2.57-2.65(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.07-$ $4.12(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz})$, $7.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.71-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.88 \mathrm{ppm}$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.0,19.8,22.5,27.3,29.2,31.6$, 36.0, 38.2, 46.2, 55.4, 69.4, 109.2, 121.9, 122.7, 123.2, 131.7, 132.1, 133.9, 143.7, 153.7, 167.0, 168.2 ppm; HRMS Calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$: 434.2206; Found: 434.2206. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 71.87$; H, 6.96; N, 6.45. Found: C, 71.91; H, 7.02; N, 6.50.

Compound 8f. Yield: 77\%; mp oil. IR (KBr): 3050, 2920, $2850,1620,1600,1500,1460,1330,1280,1230,1090,880$, $830,790,740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz})$, $1.16-1.30(\mathrm{~m}, 14 \mathrm{H}), 1.46-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.89(\mathrm{~m}, 1 \mathrm{H})$, $2.57-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.85-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.25(\mathrm{~m}, 1 \mathrm{H})$, $3.58(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 6.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 6.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=8.3 \mathrm{~Hz}), 7.41(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 7.59(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.71$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5$ $\mathrm{Hz}), 8.14 \mathrm{ppm}(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.2$, 18.6, 20.9, 22.8, 26.7, 29.5, 29.7, 29.8, 32.0, 36.6, 55.6, 60.1, $60.3,61.1,108.5,118.2,121.3,121.6,126.0,127.4,127.5$, 129.0, 129.2, 132.1, 136.2, 143.2, 144.4, 147.4, 161.5, 170.9 ppm; HRMS Calcd. for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}$: 458.2933; Found: 458.2930. Anal. calcd. for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $78.56 ; \mathrm{H}, 8.35 ; \mathrm{N}$, 6.11. Found: C, 78.61 ; H, 8.39; N, 6.17.

Compound 8g. Yield: 83\%; mp oil. IR (KBr): 3070, 3030, 2950, 2850, 1620, 1600, 1570, 1490, 1460, 1370, 1330, 1270, 1210, 1080, 1000, 800, 740, $710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.87$ $(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.25-1.33(\mathrm{~m}, 14 \mathrm{H}), 1.58-1.67(\mathrm{~m}, 2 \mathrm{H})$, $2.57(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.67(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 3.50(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $6.9 \mathrm{~Hz}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.26$ $-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 8.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4$ $\mathrm{Hz}), 8.64 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.0,20.0,22.5$, 27.2, 29.1, 29.2, 29.3, 29.4, 29.5, 31.7, 35.8, 46.1, 55.5, 71.8, $109.3,122.1,122.8,123.2,131.9,132.9,135.8,143.1,149.2$, 149.4, 153.9, 166.9 ppm ; HRMS Calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2}$: 408.2777; Found: 408.2785. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $76.43 ; \mathrm{H}, 8.88$; N, 6.86. Found: C, 76.51; H, 8.90; N, 6.95.

Compound 8h. Yield: 80%; mp $51-52^{\circ} \mathrm{C}$. IR (KBr): 3050, 2960, 2930, 1740, 1600, 1490, 1440, 1460, 1410, 1360, 1330, 1280, 1210, 1130, 1090, 1020, 840, 800, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.85(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.24-1.37(\mathrm{~m}, 14 \mathrm{H}), 1.56-$ $1.65(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.65(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz})$, $3.50(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=8.5 \mathrm{~Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.26-7.34 \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1,20.2,22.7,27.4,29.3,29.4,29.5$, 29.6, 29.7, 31.9, 36.1, 46.4, 55.6, 73.7, 109.3, 122.0, 123.0, $128.5,129.6,132.3,133.8,136.0,143.5,154.1,167.0 \mathrm{ppm}$; HRMS Calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{ClNO}_{2}$: 441.2435 ; Found: 441.2435 . Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{ClNO}_{2}$: C, 73.36; H, 8.21; N, 3.17. Found: C, 73.41; H, 8.42; N, 3.21.

Compound 8i. Yield: 59%; mp $80-81^{\circ} \mathrm{C}$. IR (KBr): 3080, 3030, 2950, 2920, 2850, 1770, 1710, 1630, 1600, 1490, 1460, 1430, 1400, 1320, 1270, 1200, 1080, 1050, 1020, 990, $720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.86(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.24-1.35(\mathrm{~m}$, $14 \mathrm{H}), 1.54-1.63(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.65(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $7.1 \mathrm{~Hz}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}), 4.20(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $5.3 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.75-$ $7.69(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.87 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: ठ 14.1, 19.8, 22.6, 27.3, 29.3, 29.4, 29.5, 29.6, 29.7, 31.8, 36.0, 38.2, 46.2, 55.3, 69.4, 109.2, 121.8, 122.7, 123.1, 131.7, 132.1, 133.9, 143.7, 153.7, 167.0, 168.1 ppm ; HRMS Calcd. for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}$: 490.2832; Found: 490.2828. Anal. calcd. for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 73.44 ; \mathrm{H}, 7.81 ; \mathrm{N}, 5.71$. Found: C, 73.49; H, 7.93; N, 5.76.

Compound 8j. Yield: 91\%; mp oil. IR (KBr): 3060, 2930, 2850, 1770, 1710, 1620, 1600, 1570, 1490, 1440, 1400, 1370, 1340, 1270, 1220, 1080, 1050, 940, 900, 800, $720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 0.87(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.29-1.41(\mathrm{~m}, 14 \mathrm{H})$, $1.59-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.98(\mathrm{~m}, 4 \mathrm{H}), 2.64-2.71(\mathrm{~m}, 4 \mathrm{H})$, $3.58(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 3.78(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.95(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}), 6.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=8.5 \mathrm{~Hz}), 7.69-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.84 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1,19.9,20.9,22.6,25.3,27.4,27.6,29.2$, 29.3, 29.4, 31.8, 36.0, 37.6, 46.4, 55.5, 60.2, 72.1, 109.2, 121.7, $122.9,123.0,132.0,132.1,133.8,144.0,154.2,167.1,168.3$, 170.9 ppm; HRMS Calcd. for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}$: 518.3145; Found: 518.3142. Anal. calcd. for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $74.10 ; \mathrm{H}, 8.16 ; \mathrm{N}$, 5.40. Found: C, 74.18 ; H, 8.21; N, 5.47.

Compound 8k. Yield: 71%; mp $92-93{ }^{\circ} \mathrm{C}$. IR (KBr): 3070, 2920, 2850, 1670, 1610, 1570, 1490, 1450, 1390, 1280, 1210, $1080,860,750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=5.6$ $\mathrm{Hz}), 1.26-1.36(\mathrm{~m}, 14 \mathrm{H}), 1.58-1.67(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $7.5 \mathrm{~Hz}), 2.72(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 3.65(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.87$ $(\mathrm{s}, 3 \mathrm{H}), 5.85(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.49$ ppm (d, $1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1,19.7,22.7$, 27.2, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 36.0, 45.7, 56.2, 58.3,
$109.8,117.2,123.2,124.9,129.9,131.8,137.5,152.4,153.9$, 157.8, 166.4 ppm; HRMS Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$: 493.1899; Found: 493.1899. Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 60.73; H , 6.73; N, 8.50. Found: C, 60.76; H, 6.80; N, 8.56.

Acknowledgments. This work was supported by a grant from the Korea Science and Engineering Foundation (KOSEF) to the Environmental Biotechnology National Core Research Center (grant \#: R15-2003-012-02001-0).

REFERENCES

[1a] Kanemitsu, T.; Yamashita, Y.; Nagata, K.; Itoh, T. Synlett 2006, 1595. [b] Kaufman, T. S. Synthesis, 2005, 339. [c] Bracca, A. B. J.; Kaufman, T. S. Tetrahedron 2004, 60, 10575. [d] Kaufman T. S. Tetrahedron Asymmetry 2004, 15, 1203. [e] Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. 2004, 104, 3341. [f] Ankabe, E.; Vicario, J. L.; Badia, D.; Carrillo, L.; Yoldi, V. Eur. J. Org. Chem. 2001, 4343. [g] Rozwadowska, M. D. Heterocycles 1994, 39, 903. [h] McNaught, K. S.; Carrupt, P. A.; Altomare, C.; Cellamare, S.; Carotti, A.; Testa, B.; Jenner, P.; Marsden, C. D. Biochem. Pharmacol. 1998, 56, 921. [i] Yamakawa, T.; Ohta, S. Biochem. Biophys. Res. Commun. 1997, 236, 676. [j] Nagatsu, T. Neurosci. Res. 1997, 29, 99. [k] Thull, U.; Kneubuler, S.; Gaillard, P.; Carrupt, P. A.; Testa, B.; Altomare, C.; Carotti, A.; Jenner, P.; McNaught, K. S. P. Biochem. Pharmacol. 1995, 50, 869.
[2a] Cho, S. D.; Park, Y. D.; Kim, J. J.; Joo, W. H.; Shiro M.; Esser, L.; Falck, J. R.; Ahn, C.; Shin, D. S.; Yoon, Y. J. Tetrahedron 2004, 60, 3763. [b] Cho, S. D.; Song, S. Y.; Hur, U. J.; Joo, W. H.; Falck, J. R.; Yoon, Y. J.; Shin, D. S. Tetrahedron Lett. 2001, 42, 6251. [c] Cho, S. D.; Kweon, D. H.; Kang, Y. J.; Lee, S. G.; Lee, W. S.; Yoon, Y. J. J. Heterocyclic Chem. 1999, 36, 1151. [d] Cho, S. D.; Kim, S. K.; Chung, H. -A; Kang, Y. J.; Yoon, Y. J. J. Heterocyclic Chem. 1999, 36, 75. [e] Cho, S. D.; Kim, S. K.; Yoon, Y. J. J. Heterocyclic Chem. 1998, 35, 77. [f] Chang, K. C.; Ko, H. J., Cho, S. D.; Yoon, Y. J.; Kim, J. H. Eur. J. Pharmacol. 1993, 236, 51.
[3a] Samma, M. The Isoquinoline Alkaloids, Chemistry and Pharmacology, Organic Chemistry A Series of Monographs vol. 25, Academic Press, New York, 1972. [b] Kametani, T. The Total Syntheses of Isoquinoline Alkaloids in The Total Synthesis of Natural Products, vol 3. ed. by ApSimon, J. John Wiely \& Sons, New York, 1977.
[4a] Ziolkowski, M.; Czarnocki, Z. Tetrahedron Lett. 2000, 41, 1963. [b] Polniaszek, R. P.; Kaufman, C. R. J. Am. Chem. Soc. 1989, 111, 4859. [c] Suzuki, H.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 1995, 36, 6709.
[5] Chung, H. -A; Kweon, D. H.; Kang, Y. J.; Park, J. W.; Yoon, Y. J. J. Heterocyclic Chem. 1999, 36, 905.
[6] Lin, C.-F.; Yang, J.-S.; Chang, C.-Y.; Kuo, S.-C.; Lee, M.-R.; Hung, L. -J. Bioorg. Med. Chem.
2005, 13, 1537.

